# Ring Opening/Fragmentation of Dihydropyrones for the Synthesis of Homopropargyl Alcohols



Jumreang Tummatorn and Gregory B. Dudley J. Am. Chem. Soc. 2008, ASAP

> Current Literature Presentation Abhisek Banerjee Wipf Group Mar-29-2008

# The Crossover Reaction

The Eschenmoser-Tanabe Fragmentation



Enone Formation from Vinylogous Acid Ester



Tandem Addition/Fragmentation of Vinylogous Acyl Triflates



Dudley et al. J. Am. Chem. Soc. 2006, 128, 6499

# <u>Tandem Nucleophilic Addition/C-C Bond</u> <u>Fragmentation Reactions of Vinylogous Acyl Triflates</u>



Dudley et al. J. Am. Chem. Soc. 2006, 128, 6499



Reaction Conditions: Vinylogous acyl triflate (0.55 mmol), RLi (0.50 mmol) in solvent (2 mL) R = Ph, THF; R = n-Bu, Toluene

- Other Aryl Grignard or Lithium reagent such as  $o_{-}$ ,  $m_{-}$ ,  $p_{-}(MeO)C_6H_4$ -MgBr.
- Other Alkyl Lithium reagent such as *i*-PrLi, *t*-BuLi, MeLi.
- Yields suffer with reactive and hindered nucleophilic reagents.



Dudley et al. J. Am. Chem. Soc. 2006, 128, 6499

### Synthesis of Acetylene tethered 1,3-Diketones



Stoichiometry: Triflate (1 equiv.); Prenucleophile (2.6 equiv.), LiHMDS (2.2 equiv.)



Dudley et al. J. Am. Chem. Soc. 2006, 128, 6499

### Synthesis of Acetylene tethered Alcohols



Dudley et al. J. Am. Chem. Soc. 2006, 128, 6499

### Synthesis of Acetylene tethered Amides



secondary amines resulted in decomposition of the triflate

Dudley et al. J. Am. Chem. Soc. 2006, 128, 6499

Page 7 of 14

# Synthesis of Homopropargyl Alcohols

Homopropargyl alcohols key building block for synthesis of Polyketides and macrolides



Marshall et al. Chem. Rev. 1996, 96, 31

# Synthesis of Chiral Dihydropyrones

Hetero Diels-Alder Approach:



Feng et al. J. Org. Chem. 2006, 71, 4141

Author's Approach:



Imbroisi et al. Bioorg. Med. Chem. 2004, 12, 865

#### **Decomposition of DHP Triflate Under Various Conditions**



| entry          | R-M                                                    | solvent        | yield                |
|----------------|--------------------------------------------------------|----------------|----------------------|
| 1 <sup>a</sup> | Ph-Li <sup>b</sup>                                     | THF            | 48%                  |
| 2              | Ph-MgBr <sup>c</sup><br>Ph-MgBr <sup>c</sup>           | THF<br>toluene | 54%<br>84%           |
| 4              | p-MeO-C <sub>6</sub> H <sub>4</sub> -MgBr <sup>d</sup> | toluene        | 51%                  |
| 5              | n-Bu-MgCl <sup>e</sup>                                 | toluene        | 70%                  |
| 6<br>7         | Me-MgBr<br>Me-Li                                       | toluene        | 2 <b>95</b> %<br>42% |
| 8              | i-Pr-Li <sup>g</sup>                                   | toluene        | 15%                  |

 $^{a}$  -78 °C  $\rightarrow$  60 °C.  $^{b}$  2.0 M in butyl ether.  $^{c}$  3.0 M in ether.  $^{d}$  0.5 M in THF.  $^{e}$  2.0 M in ether.  $^{f}$  1.6 M in ether.  $^{g}$  0.7 M in pentane.

- Toluene is better solvent than THF
- Grignard Nucleophiles outperformed organolithiums
- Methylmagnesium bromide is optimal choice

Dudley et al. J. Am. Chem. Soc. 2008, 130, ASAP

### Postulated Reaction Pathway



Dudley et al. J. Am. Chem. Soc. 2008, 130, ASAP

### Decomposition of DHP Triflates with MeMgBr



Dudley et al. J. Am. Chem. Soc. 2008, 130, ASAP

### **Decomposition of Substituted DHP Triflates**



Dudley et al. J. Am. Chem. Soc. 2008, 130, ASAP

## Summary

✓C-C bond cleaving fragmentation reaction induced by the addition of various nucleophiles to cyclic vinylogous acyl triflates produces acyclic acetylenic compounds.

- ✓ Nucleophilic addition of methylmagnesium bromide to 5,6-dihydro-2-pyrone (DHP) initiates a ring opening/fragmentation process to furnish homopropargyl alcohols.
- This stereospecific strategy provides chiral homopropargyl alcohols that may be difficult to access by other means.